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used in another case were the original functions with 
exponents multiplied by 0.85 and 1.5. They result in 
agreement factors of 0.0046 and 0.0048, respectively, 
again confirming that the application of this algorithm 
is not highly dependent upon having a good basis. 
These results indicate there is a possibility that the 
solution will depend upon the initial guess matrix, but 
there is not an infinity of solutions as would be expected 
in a typical underconstrained problem. To eliminate 
any possible arbitrariness, we suggest using a free 
variational calculation, either Hartree-Fock or some 
approximation to Hartree-Fock as an initial guess. 
This idea is an extension of the work of Henderson & 
Zimmerman (1976) which indicated the existence of 
continuous, noncrossing, idempotent, energy-property 
hypersurfaces. This means that if one starts with an 
idempotent matrix of lowest possible energy and 
changes its fit to X-ray scattering data in a slow 
quasi-continuous way, the result will be closest to the 
original matrix. To investigate a problem for which the 
exact solution is not idempotent, the spherical atomic 
scattering factors for hydrogen calculated by Stewart et 
al. (1965) were used to construct a set of molecular 
scattering factors at an interatomic distance of 0.81 × 
1.4009 atomic units. Scattering factors for nineteen 
values of sin 0/2 from 0.0215 to 0.6011 ./k -~ were used 
in four planes whose angles with the internuclear bond 
were 0, 20, 50 and 90 °, to make a total of seventy-six 
scattering factors. Huzinaga's (1965) Gaussian expan- 
sions of STO's with variable exponential factors were 
used to expand the density matrix. In accord with 
previous results, good fits to the density were found to 
be not very sensitive to the details of the basis 

functions. Limited experimentation with three atomic 
basis functions generally refined to R = 0-023 
regardless of exponents or type (Is, 2s, 3s). Presented 
in Fig. 3 is a typical result. 

We thank Barbara Rubensohn for constructing Fig. 
1, and Eric Unhjem and Toni Pezone for constructing 
Figs. 2 and 3, and CUNY-FRAP for grant support. 
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Abstract 

Expressions for the estimation of the I Gnl values, the 
I gxl  values of the squared structure, on the basis of all 
quartets in which H is a cross-term vector are presented 

0567-7394/82/010098-05501.00 

for the space groups P1 and P1. A reliable estimation 
procedure was developed employing the quartets with 
highest quartet product only. It appears that in this way 
I EI values of strong or weak reflections outside the 
limiting sphere could be predicted. An implication of 
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this is that for quartets with only two cross terms in the 
measured area of reciprocal space, the E 's  of which are 
both either large or small, the 1El of the third cross 
term is more likely to be large or small respectively. It is 
further shown that the estimated I GI values sharpen 
the Patterson synthesis; however, at its present state 
this technique does not offer advantages over other 
sharpening procedures. 

Introduction 

Quartet phase sums 

(04 = (~H -1- q)K -t- q)L -I- ( ~ - H -  K - L 

can be estimated in a reliable way with the I EI values 
of the reflections H, K, L and - H - - K -  L and those 
of H + K ,  H + L  and K + L  (Schenk, 1973; 
Hauptman, 1975; Hauptman & Green, 1976; Gilmore, 
1977; van der Putten & Schenk, 1979) and in 
particular extreme values of (04 may be predicted with 
the required accuracy for not too large structures. A 
quartet has a large probability to be positive ((o4 ~- 0) if 
E 4 : N - ~ I E H E x E  L En+z~+z,I and the cross-term 
magnitudes I EH+z~l, I EH+z,I, I EK+z,I are large (Schenk, 
1973). If, on the other hand, E 4 is large and the three 
cross term I El ' s  are small a quartet has a large 
probability to be negative: ~P4 ~- n (Hauptman, 1974; 
Schenk, 1974). 

This paper presents expressions for the estimation of 
[Gnl, the I EI value of a reflection H for the squared 
structure. The expressions make use of all quartets for 
which H is a cross term and they show that if H occurs 
many times as a cross term in positive quartets, there is 
a large probability that I Gnl is large. The reflection H 
may be either inside or outside the limiting sphere. 

By application to five structures the relevance of the 
I GI estimates for crystal structure determinations is 
evaluated. For two equal-term structures with I EHI ~- 
I Gnl, the I GI estimates are used in order to predict I EI 
values outside the limiting sphere and for the other 
three, in which heavy atoms were present, the I Gl's 
were used to sharpen the Patterson synthesis. 

Expressions for estimation of I GHI in the space groups 
PI and PI 

For structures with non-equal atoms, Sayre's equation 
for normalized structure factors may be written as: 

Gn = CH ~ Ez~ EH-z~, (1) 
K 

where G H is the E value of reflection H of the squared 
structure and CH is a positive constant which may be 
readily determined (see, for example, Cochran, 1955). 

Multiplying both sides by their complex conjugates 
leads to 

12 I GH Iz : C~ EK EH-z~ (2) 

o r  

IGHI 2 = C~ ~ ~ IE K EH_ ~ E_z , EZ,_HI cos ~P4 (3) 
K L 

in which 

and 

K + ( H -  K) + (--L) + ( L -  H) = 0 (4) 

~P4 = ¢K + CH-K + ¢-z, + ¢Z,-H" (5) 

The cos ~P4 value in (3) may be approximated by the 
expected value found from the joint probability 
distribution of ~4 given the I EI values of the seven 
reflections H, K, H -- K, --L, L - - H ,  K - - L  and 
H - K -- L (Hauptman, 1975). In view of the fact that 
one of the aims of this paper is the estimation of I GHI 
outside the limiting sphere, for which I EHI is not 
available, (3) is here approximated by an analogous 
expression: 

IG.I2 = C~ 2 (IE~ EH_ x E_z, E,. _HI (cos~o416))~,z`, (6) 

where (cos ¢P416) is the expected value of cos ~P4 given 
the I EI values of the six reflections K, H - K ,  - L ,  
L - H, K - L, and H - K - L. 

As was pointed out by Giacovazzo in a number of 
papers (see, for example, Giacovazzo, 1976), six 
magnitude expressions for quartets in fact use 1El 2 = 1 
for the missing cross term, which implies that our 
practical approach to be described in the next section in 
fact starts from an estimate I EHI z -- I and ends with a 
better estimate for I G HI 2. In analogy with Hauptman 
(1975), the joint probability distribution of ~P4 given six 
magnitudes is then 

P(cP416) = C" exp ( - B  cos ~P4)Io(21Etc-z,IZl3/N1/2) 

× I0(21EH_K_Z`IZ23/NI/Z), (7) 

where C "  is a suitable normalizing constant, 

B = 2N-'IE K EH_ K E_z, Ez,_nl, (8) 

Z,3 = (E~ E 2 + E~_~ E2_H 

+ 21E~ E_z` EH_ K Ez,_nl c o s  (p4) 1/2, (9) 

z23 = e l  + e L H  

+ 21E x E_z. EH_ ~ Ez,_nl cos ~p4) '/2, (10) 

and I 0 is the modified Bessel function of zeroth order. 
In further analogy with Hauptman (1975) the 

conditional expected value of cos ~P4, (cos ¢P416), is then 
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found from (7) as 

(cos f0416) = 

0O 

Z ( - 1 )  ~'+~+' Iu~I~,+~+,(B) 
.0,, 1) 

--CO 

oo  

Z ( - 1 )  ~'+" L,.I~,+.(B) 
/a ,b,  

--(30 

(11) 

in which 1 is a modified Bessel function and 1~,, is 
defined by 

I,,~= I,(2N-'/21EK_L Ex E_L I) 

x I~,(2N-'/ZlEK_L EH_ K Et_sl) 
x I,, (2N-'/ZlEu_K_~. EH_xE_ L I) 

x I (2N-I/2[Eu_K_L ExEL_HI ). (12) 

Of course (cos (o416) may be estimated from (I I), but it 
takes less computing time to calculate 

(cos (0416) --- f [P(~0416) cos ¢p4 dfP4]. (13) 
0 

A numerical approximation of (13), involving a 
summation at five 1~041 values has been used throughout 
our calculations. 

In space group P i  (6) reduces to 

IGHI2=C~tZ<IEKEH_KE_L E,_HIS)K,,,  (14) 

in which S ( =  +1), the sign of the quartet, may be 
estimated with P~ (Giacovazzo, 1976): 

P [  = C"  exp (¥ B / 2 )  

×,cosh [ IEu_,IN-'/2(IExE_,l + IEH_ K E,_HI)] 

x cosh[IEu_K_rlN-I/2(IEn_KE_LI +_ IExE,_HI)]. 

(15) 
A better expression including weights for the individual 
terms is given by 

IGuI2=C~ '2 <IExEu_xE_, E,_HIS/VAR>x,, (16) 

with the variance VAR defined by 

4P + P~ 
VAR = ( ~  + p D  ~" 

N u m e r i e a l  es t imat ion o f  l G I 2 values  

In our experiments (7) and (15) were used rather 
than the corresponding formulae for the unequal-atom 
case, derived by Hauptman (1976) and Hauptman & 
Green (1976). The latter expressions, which involve the 
terms (3a32 -- a 2 a4)/e 3 a n d  .~3/0 "3/2 instead of 2/N and 
1/N '/2 respectively (an = ~ = 1  f~), appear to over- 
estimate negative values of cos ~04 for structures with 

OF THE SQUARED S T R U C T U R E  

heavy atoms. In testing (6) and (14) we made the 
following observations: 

(1) A given reflection may occur as a cross term in a 
very large number of quartets depending on the length 
of its reciprocal vector. For a structure with 4000 
reflections this number may be of the order of 
1 000 000. Thus the estimation of one I GI value will 
take large amounts of computing time, if all quartets 
are employed. 

(2) The estimate of cos (o 4 in (6) and of S in (14) is 
unreliable if either B, defined by (8), is small or the I EI 
values of one or two cross terms K - L and H - K - L 
are unknown. Of course the contributions of those 
quartets to (6) and (14) are small in most cases. 

In view of this we have developed the following 
procedure. To start with, 10 000 to 50 000 quartets 
with largest E 4 values are generated for the 500 to 1000 
strongest reflections. Then in the centrosymmetric case 
for each H the sum 

SUMC = ~. ~. IE~:EH_KE_L EL_HIS/VAR, (17) 
K L 

and in the non-centrosymmetric case the sum 

SUMN = ~ Z IEx En-x E-L EL-HI(cos ~0416), (18) 
K L 

is calculated. Subsequently, those sums are selected for 
further calculations which include at least 20 quartets, 
as the others do not give reliable results. In order to 
correct for the variation in the number of quartets, in 
which a given reflection appears as a cross term, a 
scaling factor A can be applied (see the Appendix for 
its derivation and form). Because the summations (17) 
and (18) do not include all quartets, (16) and (6) reduce 
to 

IGnleocA x SUMC (19) 

and 

I anl 2 oc A x SUMN. (20) 

From tests it is found that large values of (19) and (20) 
correspond to large I GH 12 values and likewise for small 
values. The latter, however, are less reliable than large 
I Gel estimates and are very scarce, because the 
requirement that at least 20 quartets are used in the 
summations (17) and (18) is seldom fulfilled. In order 
to arrive at estimated I G HI 2 values the data obtained 
from (19) and (20) have to be scaled. This is done from 
the distribution of the known tEl values as a function 
of sin 0/2 by the following procedure. 

A list is made of the reflections, arranged in 
decreasing order of SUMC or SUMN. This list is 
divided into groups of 100-300 reflections. Then the 
known I EI values of each group are divided into four 
equivalent subgroups, according to their sin 0/2 value. 
For each of the subgroups the < I EI > and <sin 0/2)  
are calculated. Finally, these values are plotted and a 
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straight line is fitted. The lines provides an estimate for 
I Gnl at a given value of sin (On)/L 

Table 1. Average actual I EI 2 value for monomorine 
of the number (NR) of reflections outside the limiting 

sphere with the smallest A x SUMS's (19) 

Calculating I El's outside the limiting sphere 

For equal-atom structures IGxl = I EHI and thus I EI 
values of reflections outside the limiting sphere can be 
estimated. This application has been tested with two 
structures: prostaglandin E2 (PGEz), C20H320 5, P1, 
Z = 1, N = 25 (Edmonds & Duax, 1974a,b) and 
monomorine ,  CI9H27N4OT, P1, Z = 4, N = 120 
(Overbeek, unpublished). 

For the 1554 measured reflections of PGE 2 IEl's 
were calculated and about 20000 quartets were 
generated for the 500 reflections with largest I EI. On 
the basis of the quartets 99 I El ' s  of reflections outside 
the limiting sphere were estimated to be at least 1.5. A 
comparison of these estimates with the calculated I El ' s  
showed that 62 out of the 99 are larger than 1.5, 11 
have an I EI between 1.5 and 1.2, 13 an I EI between 
1.2 and 0.8 and only three have an I E I lower than 0.8. 
In the set of 1554 measured reflections only 63 have an 
I EI value larger than 1.5 and thus there is a great 
extension of the number of strong reflections for this 
difficult structure. No small I EI values could be 
estimated because of the requirements that SUMN (18) 
is built up from at least 20 contributors and SUMN 
0. Relaxing the first requirement to three contributors, 
14 I EI values of reflections outside the limiting sphere 
could be indicated to be small. For these reflections the 
actual average I EI 2 value was 0.67. 

The above calculations were repeated using the 
measured I EI values instead of the calculated ones. 
These experiments showed similar results. 

For the measured 3981 reflections of monomorine 
the I EI values were calculated and about 27 000 
quartets were generated for the 1000 strongest reflec- 
tions. With the quartets, 66 I EI values of reflections 
outside the Ewald sphere were estimated to be 2.0 or 
higher, and a comparison with their calculated I EI 
values showed that 31 were above 2.0, 14 were 
between 2.0 and 1.5, 10 between 1.5 and 1.0 and the 
other 11 smaller than 1.0. Again it appears that most 
of the strong I EI estimates correspond to strong I EI 
values. With the requirements that the number of 
contributors to SUMC is at least 3 and SUMC _ 0, 
176 I EI values of reflections outside the limiting sphere 
could be indicated to be small. Table 1 shows that the 
smaller the SUMC value, the more reliable the 
estimated I EI value. 

Again experiments using the actual I EI values 
instead of the calculated ones show similar results. 

From the two examples it may be concluded that a 
number of large I El ' s  outside the limiting sphere can be 
estimated. In fact, this applies also to the weak I E l's. In 
the quartet theories I EI 2 estimates of 1 are used in case 

NR (Igl  2 real 

10 0.34 
20 0.37 
30 0.50 
40 0.57 
50 0.67 
75 0.79 

100 0.78 
125 0.79 
150 0.86 
175 0.94 

a reflection outside the limiting sphere occurs in a 
quartet as a cross vector, thus eliminating the effect of 
the cross term on the probability distribution of the 
quartet. Our examples show that this leads to results 
which are less accurate than necessary, since, for 
example, a quartet with two large cross I El ' s  has a 
sizeable probability to have the third cross I EI large 
also. A better procedure should therefore include an 
estimation of the strong I EI values of reflections 
outside the limiting sphere, before the phase sums of the 
individual quartets are estimated on the basis of main 
and cross terms. Of course, the above results cannot 
imply that the technique described improves the 
resolution; this is only achieved by measuring data for 
larger reciprocal vectors. On the other hand, our 
technique enables a reorganization of the structure- 
factor information and thus of the phase relationships; 
it acts as a sort of filter for useful information. 

Sharpening the Patterson function 

For non-equal atom structures the I GI values were 
used as coefficients in a Patterson synthesis in order to 
sharpen the-peaks of the heavy-atom-heavy-atom 
vectors. This application will be described for three 
structures: a sulphur steroid (SULSTE), C20H2405S, 
P21/c, Z = 8, N = 204 (Kops, Bode & Schenk, 
1977); norgalanthamine chlorohydrate (NORG), 
CI6H20NOaC1, P1, Z = 2, N = 40, (Germain, 
unpublished); and a randomly generated structure 
C99Br (RANBRO), P21, Z = 2, N = 200. 

In general it can be stated that Patterson maps 
calculated with I G HI 2 values preserve the general 
features of the correct maps; the sharpening effects will 
be dealt with separately for each structure. 

For the 500 strongest reflections of SULSTE 25 000 
quartets were generated, and these were used to 
estimate 767 I GI values with a lower limit of 0.8. Then 
the Harker section y = 0-500 was calculated with the 
I GI values. In this section two S - S  peaks are present, 
one is the strongest peak in the section, the other, how- 
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ever, is peak number 16 in decreasing order of height. 
For comparison four other Patterson syntheses were 
calculated with 2403 IFI 2 values, 1727 IF21 values 
with sin/9/2 > 0.3, 2403 IEI 2 values and 767 (IGI + 
IEI)2/4 values respectively and here the two S - S  
Harker vectors were represented by the peaks num- 
bered 2 and 14, 1 and 3, 2 and 5 and 1 and 11 in 
decreasing order of height respectively. 

For the structure NORG, 1445 I GI values with I GI 
> 0.8 were estimated with 32 000 quartets. The C1-CI 
peak was the third highest in the Patterson function 
based on these I GI values. Other sharpening techniques 
such as the use of I Fl ' s  with sin/9/2 > 0.3 or the use of 
I El ' s  revealed the CI-C1 peak as the highest 
maximum. 

The third experiment was carried out with the 
generated P21 structure RANBRO (C99Br). On the 
basis of 26 000 quartets 656 I Gl's were estimated and 
the Harker section y = 0.5 showed the Br -Br  peak at a 
height of 625, whilst the second peak was 350. For 
comparison two maps were calculated with the cal- 
culated I El ' s  and I Gl's, in which the Br -Br  vectors 
were 350 and 790 respectively, whereas in both cases 
the second highest peak was 150. Again the use of 
IGl's certainly sharpens the Patterson synthesis; 
however, the effect is not dramatically better in terms of 
the signal-to-noise ratio. 

The results of these three structures show that 
sharpening the Patterson function with I GI estimates is 
possible, but it does not offer great advantages over 
other sharpening techniques. Perhaps the procedure for 
the estimation of I GI values may be improved by: 

(1) The use of formulae for the estimation of cos/94 
and S, employing the seven magnitude expressions 
(Hauptman, 1975; Hauptman & Green, 1976). 

(2) The incorporation of a second cycle, in which the 
I GI values estimated in the first cycle, are treated as 
known values. 

(3) The summation over a much larger number of 
reliably estimated quartets in (17) and (18). 

Of course computing time (now about 750 CPU s 
for one structure on a CYBER 73) will Hse steeply. 

The authors thank Professor B. O. Loopstra and Dr 
C. H. Stam for their helpful comments with respect to 

the manuscript and Professor H. Hauptman for 
valuable discussions. 

APPENDIX 
The derivation of A 'in (19) and (20) 

The theoretically possible number of triplets, for which 
the reflection H is one of the three terms, is pro- 
portional to 

V.m 
-- [2 sin (/gin,x)/2 -- sin (/9H)/2] 2 

x (2~/3)[4 sin(/gm,x)/2 + sin (/9z)/2] 

x {(4/3)~2 sin (/gm,x)/213 } -1 (A1) 

in which Veo m equals the overlapping volume of two 
limiting spheres of radius 2 sin (/gm,x)/2 whose centres 
have a separation equal to the distance, 2 sin (/gH)/it, of 
the point H from the origin of reciprocal space, lilt m 
equals the volume of the limiting sphere. 

The theoretically possible number of quartets, in 
which the reflection H occurs as a cross term, is 
proportional to: 

V om 
A -1 -- (A2) 

V2m 
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